Astroparticle Physics

Instructor: A.M. van den Berg

You don't have to use separate sheets for every question.
Write your name and S number on every sheet
There are $\mathbf{5}$ questions with a total number of marks: 55

WRITE CLEARLY

(1) (Total 14 marks)

The Friedman equation is given as:

$$
H^{2}=\left[\frac{\dot{R}}{R}\right]^{2}=\frac{8 \pi G \rho_{t o t}}{3}-\frac{k c^{2}}{R^{2}}
$$

where R is the scale parameter of the Universe. In addition, there is the fluid equation,

$$
\dot{\rho} c^{2}+3 \frac{\dot{R}}{R}\left(\rho c^{2}+P\right)=0
$$

Finally, the equation of state couples the pressure P to the density ρ through the parameter w :

$$
P=w \rho c^{2}
$$

where w is equal to $0,1 / 3$, and -1 , for the matter, radiation, and vacuum dominated densities, respectively.
(a) (2 marks)

The Taylor expansion of $\frac{R(t)}{R(0)}$ at $t=0$ up to second order in terms of $\left[H_{0} \times\left(t-t_{0}\right)\right]$ can be written as:

$$
\frac{R(t)}{R(0)}=1+\alpha \times H_{0} \times\left(t-t_{0}\right)+\frac{1}{2} \beta \times\left[H_{0} \times\left(t-t_{0}\right)\right]^{2},
$$

where t_{0} indicates the time of the $\operatorname{Big} \operatorname{Bang}\left(t=0=t_{0}\right)$. The second-order term of this expansion is known as the deceleration parameter $q(t)$. Prove that this deceleration parameter can be written as:

$$
q=-\beta=-\frac{\ddot{R} R}{\dot{R}^{2}}
$$

The parameter q describes what the fate of the Universe will be in the lang run, if q is positive the Universe will eventually collapse again, if it is negative the expansion of the Universe will increase rapidly, the Universe will go into a "big rip": even stars and atoms will break apart.
(b) (6 marks)

Using the fluid equation, and the equation of state, proof that the deceleration parameter can also be written as:

$$
q=\left[\frac{4 \pi G}{3 c^{2} H^{2}}\right]\left[\rho c^{2}+3 P\right]
$$

(c) (2 marks)

Which value for w is needed to have a Universe where $q=0$?
(d) (4 marks)

Express the deceleration parameter q in terms of dimensionless energy densities for radiation, matter, and vacuum: Ω_{r}, Ω_{m} and Ω_{Λ} where $\Omega=\rho / \rho_{c}$ and $\rho_{c}=\frac{3 H^{2}}{8 \pi G}$.
(2) (Total 16 marks)

When an ultra-high-energy proton arrives at the top of the atmosphere a particle cascade (air shower) develops. After a number of cascades the creation of new particles stops because the energy of the particles in the shower drops below a certain value, which we know as the critical energy E_{c}.

Assume for the present exercise the following:
The value for the critical energy $E_{c}=80 \mathrm{MeV}$.
Electron mass $m_{e} c^{2}=511 \mathrm{keV}$; Muon mass $m_{\mu} c^{2}=106 \mathrm{MeV}$; Pion mass about $m_{\pi} c^{2}=140 \mathrm{MeV}$ (forget that the pion mass depends a bit on the quarks involved); Proton mass: $m_{p} c^{2}=0.938 \mathrm{GeV}$.
Life time charged pions: $2.6 \times 10^{-8} \mathrm{~s}$; life time neutral pion: $8.4 \times 10^{-17} \mathrm{~s}$.
The relation between the penetration depth x into the atmosphere and the height h above sea level is given as $x=x_{0} \exp [-h / H]$, with $x_{0}=1030 \mathrm{~g} \mathrm{~cm}^{-2}$ and $H=6.5 \mathrm{~km}$.
The index of refraction n of air at sea level is $n=1+2.7 \times 10^{-4}$.
The density ρ of air at sea level is $\rho=1.2 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3}$.
The hadronic interaction length $\lambda_{\text {int }}=100 \mathrm{~g} \mathrm{~cm}^{-2}$ and the radiation length for photons and electrons/positrons is $\lambda_{\text {rad }}=37 \mathrm{~g} \mathrm{~cm}^{-2}$.
(a) (2 marks)

What processes determine the actual value of the critical energy?
(b) (2 marks)

Give a very short explanation why initially the energy in the electromagnetic part (electrons, positrons, and photons) of the air shower increases at the expense of the energy in the hadronic part.
(c) (4 marks)

Assume that in the cascade at a height of 10 km a charged pion π^{+}of energy 10^{10} eV is produced. Give the mean distance (in $\mathrm{g} \mathrm{cm}^{-2}$) for the pion to decay (neglecting interactions) and compare this with the mean distance for the particle to interact (neglecting decay). Do the same for a neutral pion $\left(\pi^{0}\right)$.
(d) (4 marks)

Calculate whether the charged pion will emit Cherenkov radiation.
(e) (4 marks)

Assume a photon of energy $5 \times 10^{9} \mathrm{eV}$ is created at a height of 10 km and starts an electromagnetic shower. Calculate the penetration depth $X_{\max }$ (in $\mathrm{g} \mathrm{cm}^{-2}$) where the shower reaches its maximum and the number of particles at this maximum.
(3) (Total 8 marks)

Cosmic rays entering the atmosphere of the Earth can produce neutrinos.
(a) (2 marks)

Describe the mechanism behind this atmospheric neutrino creation process.
(b) (2 marks)

In Figure 1 you see the calculated ratio of the fluxes for muon and electron neutrinos as a function of the neutrino energy. This plot was made assuming that cosmic rays
enter from the zenith into the atmosphere and has been calculated for detection at sea level. Explain why this ratio increases as a function of the neutrino energy.
(c) (4 marks)

What will happen with this flux if the inclination angle with respect to the zenith (also known as the polar angle θ) will increase? Explain your answer and provide information which parameters are important to understand the outcome as a function of the polar angle θ.

Figure 1. The calculated ($\nu_{\mu}+$ $\left.\bar{\nu}_{\mu}\right) /\left(\nu_{e}+\bar{\nu}_{e}\right)$ ratio of the atmospheric neutrino flux calculated at sea level and for cosmic rays entering vertically into the atmosphere as a function of the neutrino energy by three independent groups

Figure 2. A schematic representation of the mass flow towards and from a super-massive black hole.
(4) (Total 11 marks)

Charged particles can be accelerated in case there are magnetic fields at the acceleration site. During the acceleration process these charged particles interact with the interstellar of even intergalactic medium.
(a) (2 marks)

Enrico Fermi coined an acceleration process, which requires the action of magnetic fields. Give two different examples of the Fermi acceleration process.
(b) (2 marks)

Give the main difference between these two processes, and explain in a few lines why they are different.
(c) (4 marks)

Of course, in case they are injected into the accelerator, both protons and electrons can be accelerated. How can you infer from measurements, whether electrons or protons (or both) are being accelerated. In your answer, provide an explanation for the origin of the observational evidence (i.e. the messenger) which relates to electron and/or proton acceleration.
(d) (3 marks)

In Figure 2 you see a schematic picture of a spinning black hole. Use this schematic picture to provide more insight into the previous sub-question. I.e. where do you think, that the relevant processes can take place? Explain why.
(5) (Total 6 marks)

Nuclear fusion evolves in stars through a certain sequence.
(a) (2 marks)

During a long period of the life of a star, which has a mass similar to that of the Sun, fusion is a very stable process. Why is that the case? Provide the names and the actions of the essential ingredients to maintain this long period of stability.
(b) (2 marks)

Which two physics process determine the position of the Gamow window as a function of the relative energy between two colliding nuclei?
(c) (2 marks)

Describe in a few lines the reasons why a heavy star (mass larger than 10 Solar masses) will collaps.
la

$$
\begin{aligned}
\frac{R(t)}{R(\theta)} & =1+\frac{\dot{R}(t)}{R(0)}\left(t-t_{0}\right)+\frac{1}{2} \frac{\ddot{R}(0)}{R(0)}\left(t-t_{0}\right)^{2}+\cdots \\
& =1+H_{0}\left(t-t_{0}\right)+\frac{1}{2} \frac{R(0)}{R(0)} H_{0}^{2} \cdot \frac{R^{2}(0)}{\frac{R}{R}(\theta)}\left(t-t_{0}\right)^{2}
\end{aligned}
$$

The $2^{\text {nd }}$ coeff is: $\frac{R(0)}{R^{2}(0)} R(0)=+\beta$ q.e.d.
ib Fluid equatidn:

$$
\dot{\rho} c^{2}+3 \frac{R}{R}\left(\rho c^{2}+P\right)=0 .
$$

Fricidwan eg Matton

$$
\frac{R^{2}}{R^{2}}=H^{2}=\frac{d \pi}{3} y \rho-\frac{R c^{2}}{R^{2}}
$$

nualliply with R^{2}

$$
\dot{R}^{2}+k c^{2}=\frac{d \pi}{3}, G \rho R^{2}
$$

talee teme derwative : $2 R R=\frac{8 \pi}{3} \operatorname{giOR}^{2}+\frac{16 \pi}{3} p \mathrm{Y} R \mathrm{R} R$
 pto

$$
\begin{aligned}
& R=\frac{4 \pi}{3}\left[-\frac{3}{c^{2}} \frac{h}{R}\left(\rho c^{2}+\rho\right)\right] g R^{2}+\frac{2 \pi}{3} g R \rho \\
& =-4 \pi R \rho g-\frac{4 \pi \rho}{c^{2}} g R+\frac{8 \pi}{3} g R \rho \\
& =-\frac{4 \pi g R}{3}\left(\rho+\frac{3 \rho}{c^{2}}\right) \\
& q=-\beta=-\frac{\ddot{R} R}{\dot{R}^{2}}=\frac{4 \pi g}{3} \frac{R^{2}}{{R^{2}}^{2}}\left(\rho+\frac{3 P}{C^{2}}\right) \\
& =\frac{4 \pi f}{3 c^{2}} \frac{1}{H^{2}}\left(\rho c^{2}+3 P\right) \text { qed }
\end{aligned}
$$

1 c

$$
\begin{aligned}
& \rho c^{2}+3 P=0 \\
& P=w \rho c^{2} \\
& \rho c^{2}+3 w \rho c^{2}=0 \\
& (+3 w) \rho c^{2}=0 \\
& 3 w+1=D \quad \omega=-1 / 3
\end{aligned}
$$

id $\rho_{c}=\frac{3 H^{2}}{8 \pi y}$

$$
\begin{aligned}
q=\frac{\rho}{2 \rho_{c}}+\frac{3 P}{2 \rho_{c} c^{2}} & =\frac{\rho}{2 \rho_{c}}+\frac{3}{2} w \rho_{\rho_{c}} \\
& =\frac{\rho}{\rho_{c}}\left[\frac{1}{2}+\frac{3}{2} W\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\rho_{m}}{\rho_{c}}\left[\frac{1}{2}+0\right]+\frac{\rho_{r}}{\rho_{c}}\left[\frac{1}{2}+\frac{3}{2} \frac{1}{3}\right]+\frac{\rho_{\Lambda}}{\rho_{c}}\left[\frac{1}{2}-\frac{3}{2}\right] \\
& =\frac{1}{2} \Omega_{m}+\Lambda_{r}-\Omega_{\Lambda}
\end{aligned}
$$

2 a Iouviahion lostes comparad to
2 B Hou areate pions an plee collwsian pertoelin hadben and hadrons. About 33% of Preese pospos are mectogd and whey feed the Beorcompagnete chafind. But doming so the wergete on the EM hadtome charande
$2 \mathrm{C} \pi^{+}$life datle $2.610^{-8} \mathrm{~s}$.

$$
\begin{aligned}
& \lambda_{\text {decay }}=\gamma c \tau=\frac{E \pi}{m \pi c^{2}} c \tau=\frac{10^{10} \cdot 3 \cdot 10^{8} 2610^{-8}}{140 \cdot 10^{6}} \\
& =55 \mathrm{fM} \\
& \int_{\text {Ant }} / 10 \mathrm{lan}=\rho_{0} e^{-10 / 6.5}=2.610^{-4} \mathrm{~g} / \mathrm{an}^{3} \\
& t=\lambda * \rho=557 \cdot 10^{2} * 2.610^{-4}=14 \mathrm{~g} / \mathrm{cm}^{2} \\
& \lambda \text { decay }<\lambda \text { out }
\end{aligned}
$$

Satne for $\pi_{0} \Rightarrow d d c e=1.810^{-6} \mathrm{~mm}$

$$
t=4.710^{-8} \mathrm{~g} / \mathrm{am}^{n}
$$

dd. $E=10^{10} \mathrm{eN}$

$$
\begin{aligned}
& \beta>\frac{\frac{1}{n}}{n} \\
& \gamma=\frac{10^{10}}{140 \cdot 10^{6}}=71.428 \\
& \gamma=\frac{1}{\left(1-\beta^{2}\right)^{1 / 2} \Rightarrow \beta^{2}=\frac{\gamma^{2}-1}{\gamma^{2}}=0.999 d 0} \\
& \beta=0.999 g 0 \\
& (n-1)=2710^{-4} \text { af sea luvel }\left[e^{-10 / 6.5}=298\right]
\end{aligned}
$$

Dearsity at 10 lear $=21 \%$ of sea loel.

$$
\begin{aligned}
& (n-1) / \text { /olenn }=5.810^{-18} \\
& n=1+5.810^{-5}=1.000058 \\
& \frac{1}{2}=1.0001 \frac{1}{n}=0.99994
\end{aligned}
$$

Thus no Cherenbon emisside

2e phater s. 10^{9} el
peridical envagy do Melv
Numblet of epeps is $n=2 \ln \frac{5 \cdot 10^{9}}{80 \cdot 10^{6}}$

$$
=\frac{4.135}{0.69}=6
$$

Depile aftect areadrian is: $6 \times 37=22.2$ gan ${ }^{2}$ Depith af creadotron is : $201 \mathrm{~g} / \mathrm{arn}^{2}$

$$
\begin{aligned}
& K_{\text {max }}=443 \mathrm{~g} / \mathrm{cm}^{2} \\
& N=2^{6}=62,5 \quad(64)
\end{aligned}
$$

3a. Hadromic collsions produce prons.

$$
\begin{aligned}
& \pi^{+} \rightarrow \mu^{+}+\gamma_{\mu}^{4 n} \rightarrow e^{+}+\gamma_{2}+\bar{\gamma}_{\mu}+\gamma_{\mu} \\
& \pi^{-} \rightarrow \mu^{-}+\bar{\gamma}_{\mu} \rightarrow e^{-}+\gamma_{e^{-}+\gamma_{\mu}+\gamma_{\mu}}
\end{aligned}
$$

b At low enerpuis booth the pann and the mulow decay feser go they Tlaeh grourud. The ligatio os prentus ha muon decays pis ground fnôtly ion plodud less pletron Yit: the Iatere incteater

3 c Hon will start to devraty from
The sattio meaburd at $\theta=0$.
Thus is pecance of neerttiens oscillathons: $P \sim \sin ^{2} \frac{\Delta m^{2} L}{E E} \sin ^{2} \theta_{\max }$
If L cucreases, fliis dranses P.
$4 a \quad 1^{\text {st }}$ order $a^{\text {nid }}$ ordir
p laweat wi oelocity of srodus) quadratic un olocion Clonds ivld onder courder; st or der shost wans
c e give nuud sitongls synghostron

$$
\text { neupthios } \rightarrow \pi^{+}, \pi^{-}
$$

1) you puod po collide with mather lo "pi gollc wedt unaguepre field for syn chustroun The magnutre field linves are duristod
along the et $\Rightarrow \begin{gathered}\text { sunchropio eniseston from } \\ \end{gathered}$ collicions or hations acaur at the shades whene onn produces $\pi^{0} \pi^{+} \pi^{-}$
s a i) The star crlanes leate at the Tanter becanse of mudlai fusien
2) The outher leyets of the star comptruss
 Tind heat in cave cuc reases Nolume new su-asp pelizponds \rightarrow mole padiadion
If heat graratakion deoveaess, the star deventes, Tennettanule in corl ires's, newo locudibion un

Sb i) Jenvergoute sut the core controls
 partides as function of eluagy
2) Progativitiys for fusion is conprolled by numbear cansegss, rieduced mass of mudel a mides fuston
sc 1) Aphaday stements will have farsed the
2) Bupprd, thits marss pestion fussion will hop be vee plape, pecaysts numer gy needs to be suppliced '(endotherimic prooss)
3) Radiation prossure pecaylys of fusion stope the star will soncule and the dedron las will balande proe gravinatiotide prossure the pledrion ate d acts in stiad of the Padiapron
 puy can pe pata- decdy).
 star undergees a gravinationde collapss.

